

MODEL PREDICTIVE CONTROL FOR HVAC SYSTEMS

an innovative path towards energy efficiency and better indoor environment quality

> Jiří Cigler Energoklastr, Czech Republic

MODEL PREDICTIVE CONTROL (MPC)

Advanced process control method suitable for control of complex multiple-input multiple-output systems

With regards to energy and buildings, the areas of possible applications:

- Hybrid energy systems
 - Multiple (renewable) sources
 - Energy storages
- Smart-grid and connected systems
 - District heating and cooling systems
 - Time-varying cost
- Complex control objectives

Heating power Heating power State of building: temperatures PREDICTIVE CONTROL MPC Frequencies Comfort criteria Heat transfer model Constraints

hybridGEOTABS project adresses all above points

FROM TRADITIONAL TO MPC APPROACH IN BUILDINGS

MPC TRADITIONAL SCADA SCADA User interface User interface Main controller MPC SW PLATFORM **IF-ELSE rules** Main controller **FEEDFORWARD** functions Data points concentrator COMMUNICATION **\$ \$ \$ \$** Light Light AHU xy AHU xy controls controls controls controls Local controllers Local controllers $\mathbf{D}_{\mathbf{a}}^{\mathbf{b}}$ $\mathbf{D}_{\mathbf{a}}^{\mathbf{a}}$ TABS TABS controls controls

PROS AND CONS MPC

- Faster commisioning
- Validation of critical situations in advance
- O More precise setpoint tracking better comfort
- Energy efficiency achieve the comfort with minimum energy
- O Model based diagnostics of the operation of the HVAC components
- Model (set of equations) development
- Computational power, specialized libraries for numerical optimisation

MPC BUILDINGS

Office LBM, Prague CZ 450 m2 TABS Energy savings 23%

